
Underspecified reco gnition

Aditi Lahiri and Henning Reetz

Abstract
The FUL (Featurally Underspecifred Lexicon) model assumes phonological rep-

resentations of morphemes with hierarchically structured features, not all of

which are specified. Such underspecified representations are assumed for the

mental lexicon as well as for the computerised lexicon employed for automatic

speech recognition. In FUL, a segment is lexically represented by suffrcient fea-

tures to separate it from any other segments in the phonology of a particular

language. In speech production, adjacent features'fr1l in' underspecified slots,

thereby accounting for assimilations. In speech perception' incoming speech

sounds are compared online to these sets of features with a ternary logic of

match. mismatch, and no-mismatch. Features that ale present in the acoustic

signal do not mismatch with the underspecified (i.e. 'empty') slots in the lexicon.

In such an approach, speech perception can deal with different kinds of within-

and across-speaker variation found in normal speech, without listing every vari-

ant in the lexicon. Along with diachronic data and the results of psycholinguistic

experiments, the computational performance of our automatic speech recognition

system successfully demonstrates the adequacy of this model.

1 . Introduction

The speech signal of the same phonetic segment varies across dia-
lects and speakers, within speakers between segmental and pro-

sodic contexts, and even for the same speaker and context with
repetition, speaking rate, emotional state, microphone and line
condition, etc.. Ambiguities in the signal, whether they come from
random noise or whether they are linguistic in nature, like cliticis-
ations of words, or assimilations, partial or otherwise, are the
norm rather than the exception in natural language. Human listen-
ers, however, appear not to be too concerned by adverse acoustic
conditions and indeed, handle "variations" in the signal with
aplomb. Any theory of lexical phonological representation and re-
cognition must be able to account for productive phonological
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processes such as assimilations, particularly across word bound-
aries. Explicitly or implicitly, all such theories assume that at the
level of the lexical entry there is a single abstract representation,
so that not every phonological surface variant form is listed.l This
leaves unanswered, however, the question of precisely how the sys-
tem does recognise the different phonetic variants of a word when
the relationship between these realisations and the lexical entry is
not straightforward.

We will consider here the linguistic, psychological, and compu-
tational adequacy ofour approach to this question. The approach
we advocate assumes a featurally underspecified lexicon, extrac-
tion of features from the acoustic signal, and a ternary matching
condition which matches the output features to the lexically speci-
fied features. The predictions of our model - FUL (Featurally
Underspecified Lexicon) - are evaluated on the basis of language
comprehension experiments, evidence from language change, and
its computational performance in an automatic speech recognition
system. The crucial assumptions of FUL are given below.

(1) Underspecified recognition: the FUL model

a. The phonological representation is abstract and under-
specified. The feature representation for each segment is
constrained by universal properties and language spe-
cific requirements.

b. Each morpheme has a unique representation. No pho-
nological variants, morphophonological or postlexical,
are stored.

c. The perception system analyses the signal for rough
acoustic features which are transformed into phonologi-
cal features. There is no conversion into segments or
syllables and there is no further intermediate representa-
t ion .

d. The phonological features are mapped directly on to the
lexical representation. A three-way matching condition
(match, mismatch, no-mismatch) determines the choice of
candidates activated. Along with the phonological infor-
mation, morphological, syntactic and semantic informa-
tion is made available.
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Each point is discussed briefly in turn. (1a) A segment is reore_
sented with a root node and its relevant features, similar to ihat
presented in Lahiri & Evers (1991), Lahiri (2000) and Ghini (2001).
The most salient aspects of this representation are that (i) fe.,tures
are privative or monovalent, (ii) vowels and consonants share the
same place features, and (iii) the place features split into two
nodes: the articulator node consisting of the places of articulation,
and the height features under the tongue height or aperture node.
Hence [mcH] and [row] (height features) are independent of the
places of articulation [ranru.r], [conoNlr] and foonsar].

Not all features are represented in the lexicon. The specification
of features depends both on universal and language specific
grounds. For instance, the FUL system has the feature [ernurr]
in its inventory, but it is not specified in the lexical representation
for German morphemes. Neither is the feature [conoNar] speci-
fied. The assumption is that features like [annurr] and [conoNlr]
are left unspecifred unless the phonological system of the language
requires it. In our model, underspecification is context-free.

Underspecification and underspecified representations have
been the source of considerable dissension.2 A recent critique, re-
examining the pros and cons of the issues and providing further
evidence in favour of underspecification, is given in Ghini (2001).
Ghini shows that a complex pattern of vowel alternation in the
dialect of Miogliola supports not only the underspecification of
vowel features, but also that two superficially similar dental nasals
are underlyingly different - one specifred for [conoN,r.r] which al-
ways surfaces as [n], and the other unspecified for place which
surfaces as [r]1, [n] and [n] under prosodically defined conditions.
These facts are discussed in more detail with reference to lansuase
change in  $3 .

The next assertion (1b), that no phonological variant is stored,
is also linked to the notion of an underspecified representation.
No postlexical variants are stored and if morpheme alternants are
phonologically related the assumption is that only a single un-
derlying representation is available. From the signal to the phono-
logical representation, the perceptual system extracts rough acous-
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tic characteristics which are converted into phonological features
(1c). All features are extracted independent of whether they are
specified or unspecified in lexical representations. The features ex-
tracted from the speech signal are then compared to those stored
in the lexicon. There is no conversion from features into segments;
in fact there is no intermediate representation of segments, sylla-
bles or any other phonological unit. The mapping from the fea-
tures to the representation entails a ternary system of matching
(ld): match, no-mismatch and mismatch. The match condition can
only occur if both signal and lexicon have the same features. This
condition is used for the scoring of word candidates and includes
a correction formula to account for different sized feature sets.
Tlte mismatclz occurs if signal and lexicon have contradicting fea-
tures. A mismatch excludes a word from the list of possible word
candidates. The mismatching relationship can be bidirectional. For
instance, frncu] and [row] mismatch, independent of which is ex-
tracted from the signal and which is stored in the lexicon. A mis-
match can occur also in one direction due to underspecification.
For example, any one of the place features [renw], [oonsar], or

[conoN,a.r] can be extracted from the signal but only [rert,a.r] and

[oons,l.r] are stored in the lexicon. If the feature fcoRoN.tr] is ex-
tracted from the signal then it mismatches with the features [ut-
nur] and [oonser]. The other way round, the signal feature [le-
wtr] does not mismatch with an underspecified coronal sound.

A no-mismatch ocatrs (i) if no feature is extracted from the
signal that is stored in the lexicon, or (ii) if a feature is extracted
from the signal that is not stored in the lexicon, and (iii) by dehni-
tion (e.g. [conoNlr] does not mismatch with [rncn]). Case (i),

where no feature is extracted from the signal but features are avall-
able in the lexicon, does not lead to a rejection of candidates. The
signal simply does not contradict a candidate; only the candidate
does not increase its matching score (see below). Case (ii) is exactly
the case for the lexical feature [conoNar-]: coronality is not stored
in the lexicon. If a place feature like [re.nrer] or foonser] is ex-
tracted from the signal, it does not mismatch with a coronal sound
in the lexicon.
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of match, mismatch and no-mismatch(2)

SCORE :

Examples
Signal
lrrrcrrl

IconoNar]
[oonsar]
foonser ]

Matching
mismatch
mismatch
no-mismatch
match

Lexicon
Irow]
DORSAL

All word candidates that agree (match or do not mismatch) with
the initial feature set are activated, together with their phonologi-
cal, morphological, syntactic, and other information. Matching
features increase the activation level for potential word candidates,
non-mismatching features do not exclude candidates and only mis-
matching features lead to the rejection of word candidates. The
level of activation is measured on the basis of the number of
matching features with respect to those specified in the lexicon and
the number of features extracted from the signal (Reetz l99g).
Each candidate receives a score on the basis of the formura siven
in (3):

(3) Scoring formula

(i.rn. or MATCHTNG rE a,rux.rsl2
(r.,n. on FEATITRES FRoM stcNlr) x (wn. or rn,Lrrr-REs rN THE rrxcoN)

To illustrate the scoring method, the features extracted from the
signal for the first vowel in the intended German word milde
[my:da] 

'tired' would optimally be [mcn, coRoNAt, r-arnr]. The
features in the lexicon are [rucH, rlglAr]. Given these features, the
scores of other front vowels would be as follows:

(4) Scores for [y]
Lexical features Input features of [y] Score

tyl [mcn, uanr] [urcn, conoN.u, reri.a'r] 22lG x 2) : 0.66
trl [rttcu] 1rl(3 x 1) : 0.33
[v] [HIcn, rernr, nrn] 22lB x 3l : 0.44
tll [rucn, nrn] 12/(j x 2) : 0.16

According to these scores, a word llke Mtjcke [mvke] 
,mosquito'

would be a higher scoring candidate than Miete [mi:te] 
'rent, for the

initial sequence [my:] of miide.If for some reason the feature [rerur]

[oonsnr]
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was not present in the signal, or could not be extracted by the lis-

tener, the FUL system predicts that [i] would have the highest score

but [y] would still be available. None of the low vowels, however,
would be considered if [ilcH] was extracted since it would mismatch
with lexically specihed [low]. We will discuss this in more detail in $ 4.

In the next three sections we briefly go through some data in

support of the FUL model from language comprehension experi-
ments, language change, and hnally from the speech recognition
system that we are develoPing.

2. Underspecification in language comprehension

In this section, we focus on the adequacy of the assumptions in
FUL for language comprehension. To this end we will summarise
some experiments incorpopting the concept of underspecification
for lexical access.

As we mentioned above, assimilation can lead to surface vari-
ants. Assimilation of a coronal sound (e.g. lnD to a following labial
place of articulation (like /b/ in "Where could Mr. Bean be?") often
results in the production of a labial (i.e. Bea[m] be). Tt.e reverse
is not usually true, that is, a labial sound does not assimilate to a

coronal place of articulation (i.e., la[m]e duck does not become
la[nJe duck).3 Simple articulatory mechanics cannot account for

such behaviour because an articulatory assimilation would operate
in both directions. An explanation canbe given by assuming that

coronal sounds are underspecified for place, whereas labials and

dorsals are not: the labial place of articulation spreads to the pre-

ceding coronal sound (if the language has regressive assimilation)
because that sound is not specified for place. On the othdr hand,

the specification of a labial place prevents the place features of an

adjacent sound from overriding this information. Consequently,
coronal sounds can become labial (or dorsal), but labial (or dorsal)
sounds do not change their place of articulation.

This explanation is straightforward for speech production, but

not so in speech perception. How can a realisation of gree[m] in

a labial context (hke bag) or gree [r1J in a dorsal context (like grass)
lead to the access of the word sreen in the lexicon? The utterances
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gree[m] and gree[r1J are nonwords in English. And, at the same
time, how should amechanismbe constructed to disallow the activa_
tion of the word bean if the acoustic input is bea [mJ , even jf bean is
a word of the language? Human listeners handle these asymmetries
(and many other assimilatory effects) within and across words with-
out noticing it, as experimental evidence indicates (Lahiri & Mar-
slen-Wilson, l99l; Gaskell & Marslen-Wilson, 1996; Gow, 2001;
Lahiri & van Coillie, to appear). The solution to these seemingly
contradictory requirements can be obtained in the FUL system by
assuming an underspecified representation in the lexicon, where cer-
tain features (like the place feature [conoNar] \ are not stored in the
lexicon (in speech production, segments with unspecifred place are
generated with the feature [conoNar] by default) and by postulating
the ternary matching logic in the signal-to-lexicon mapping.

Assuming that phonological lexical representations of words
consist of underspecified featural repg,esentations, Lahiri & Mar-
slen-Wilson (1991, 1992) argue that the mapping process from the
signal to the lexicon crucially depends on the absence and presence
of features in the representations of words in the mental lexicon.
They contrasted vowel nasality in Bengali and English, where Ben-
gali has underlying nasal vowels as well as contextual nasalisation
(bhar] 'clay bowl', lbhsnl > [bhan1 

'pretence'). On the other hand,
any nasality on a vowel in English comes from a neighbouring nasal
consonant. They argued that only underlying contrastive nasal vow-
els in Bengali are specified for nasality; for other vowels, no nasality
is specified. Results show that indeed, the listener always interprets
nasality on a vowel as being contrastively nasal even if the stimulus
segment contained a vowel which was contextually nasalised. More
strikingly, oral vowels in oral contexts, for both English and Bengali
(English bad, Bengali [bhor] 

'weight'), are interpreted by listeners as
having either a nasal or an oral context, depending on the distribu-
tion of the words in the language. That is, the vowel [r] in bad was
equally likely to be a interpreted as being p afi of bad or ban, showing
that in both languages the oral vowels were represented as unspeci-
fied for nasality in spite of the fact that there may be surface phonetic
nasalisation present in production of CVN words.

Thus, along with underspecification, the three-way matching -
match, no-mismatch and mismatch - gives the asymmetry between
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coronals on the one hand and labials and dorsals on the other. If

[conoNlr] is extracted from the signal, then it mismatches with

[rennr.] (i.e. [n] mismatches with underlying lml).It does not find
a perfect match since lnl is not specified for [conoNar], but it does
not mismatch either - hence a no-mismatch situation occurs. If

[rarnlar] is retrieved from the sign aI, it matches perfectly with un-
derlying lml, but iq also does not mismatch with /n/. This is not
the best match, but it is a no-misrnatch. Examples of the three way
distinction are given in (5).

Matching from signal to lexicon
Signal Matching
[rucn] match
[srnronNr] mismatch
parnnarl mismatch
[conoNar] mismatch
[conoN,Lr] no-mismatch
[rnnmr] no-mismatch

The system can handle within and across word assimilations andcan
deal with a certainnumber of dialectal variants. The asymmetry in

assimilation is explained by the fact that since the place feature [co-
noNnr] is unspecified, the feature [r.r.nu.r] detected in the signal for
gree[mJ book does not mismatch with the lexical representation
green. However, the feature [oonser,] detected in the signal for ho [r1J
does mismatch with the feature [rannr] in the lexical representation
of home, and so home is rejected. Coronals get a lower score than
the labials (or dorsals), which obtain a match, but coronals are not
excluded. They remain activs as assimilatory variants.

Lahiri & van Coillie (to appear) provide further evidence for

the underspecification of [conbNer], ind the eflisacy of the three-
way matching. We will briefly discuss two experiments. In both
experiments, a crossmodal lexical decision task with semantic
priming was used. The listeners were auditorily presented with a

ieal word like Bahn'railway' or Lrirm 'noise' in isolation. At the
offset of the acoustic stimulus, the subjects saw a semantically re-

lated word Ilke Zug 'train' or Krach 'bang, racket' and they had
to decide whether ii was a word or not. Since it is well established
in the psycholinguistic literature that semantically related words

Lexicon
[rucn]
[N,Ls,+.r]
[Naser]
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pdme, the expectation was that the subjects would be faster in
reacting to Zug after they heard Bahn as compared to an unrelated
word Maus 'mouse'. Similarly, Krach should be recognised faster
after Lcirm rather than after Blatt 'leaf' . The question of course rs
whether nonword variants of the real word primes would have anv
effect. That is, would related acoustic variants *Bahm or *LarL
prime Zug and Krach respectively? The first experiment presented
here examined word final nasals. The experimental design and pre_
dictions are illustrated below.

(6) Recognition of word final nasals: predictions

Acoustic
Test Primes

Target

ZUG

Lexical
Representation

Pah /NASAI"/

ryW
no-mismatch
no-mismatch

Predicted
Reaction Times

nan tnl ]xBah [m] J
FAST
FAST

Acoustic
Control
Prime

unrelated SLOW

Acoustic
Test Primes

KRACH

Lexical
Representation

Liir /NAsAr"/
I

[uunr]

match
mismatch

Predicted
Reaction Tirnes

Liir [m] FAST
SLOW*L!ir [n]

Acoustic
Controi
Prime

Blan unrelated sLow
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The claim is that although the acoustic prime*Bahm is a nonword
it does not mismatch with the lexical representation of Bahn and
therefore successfully activates Zug. The signal has the feature [rn-
srAL] but the lexical representation has no place specified in the
lexicon and hence it is not rejected. This is not the case with an
underlying labial. When the feature [conoNar] is extracted from
the nonword *Lrirn, rt mismatdhes with the lexically represented

[rannr] of the real'wor d Lrirm and hence its semantic associate is
not activated. Apart from the nasal, we used additional consonan-
tal variations as primes which deviate from the lexical representa-
tion with respect to other features as well. The matching expecta-
tions are given in (7).

(7) Other consonantal variants of word final nasals

a. Variants of final 1-nl

Acoustic Acoustic
variant features
Bah[] [rnrnntr]

Lexical Represen- Matching
tation of lnl

IconoNa.r]

[r.nntnr]
[ranltr]

mismatch
no-mismatch

mismatch
no-misrnatch

Bahlpl

Bah[s]

b.Variants of final l-ml
Acoustic Acoustic
varrant features
Lnr[w] [coNrnrunNr]

[rannr]
Liir[p] [,tnnurr]

.[rannr]

Liirfs] [srnronNr]
IconoNar]

tatio.q of lml

[N,t s,t r]
[rannr]

[Nas,r.r]
[r,a.nmr]

[Nasar]
frentar]

mismatch
matclt

nnismatch
match

rmismatclt
mismatch

not specified
is always so.

Note that features like [annuer] and [conoNer] are
in the German lexicon. It does not mean that this

IN,q.sarl
ffi

fsrnnnNrl lNaserl mismatch
["o*o^orj 

'ffi 
no-misntatch

Lexical Represen- Matching
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Depending on the grammar of a particular language, [conoNar]
for instance can be specified for nasals and not for stops, as laid
out in the next section.

As indicated in (6) and (7), for each word, 4 nonword primes
were created by changing the final consonant.a Thus for the word
Bahn, the nonwords were Bah[mJ, Bah[lJ, Bah[sJ, Bah[pJ. In
addition, there was a control prime for each target, where the con-
trol was unrelated to the real word prime (e.g. Maus-Zug). Thus,
in all, for one target there wer€ six different primes. However, each
subject was faced with the target only once. Reaction time mea-
surement started at the offset of the auditory prime when the visual
target was presented. The results of the experiment are given in
Figures 1 and 2. In Figure 1, we see the reaction times when the
prime was a variant of an underlying l-nl unspecifled for place. In
comparison to the control, there is a significant priming effect for
the real word Bahn as well as the variant *Bahm where the final
consonant did not mismatch.s In all other instances there was no
priming effect. Recall that under our assumptions, there is no dif-
ference in matching between the surface Bah[nJ and Bah[*J wbpn
compared to the real word Bahn (see 6). Since the nasal is unspeci-
fied for place, both variants with [n] and [m] are no-mismatches.
Hence we did not expect any difference between the two conditions
and our results bear this out - they do not differ significantly.

In Figure2,we see the results of the variants of the words with
final l-ml. Hete, the only word which has a significant priming
effect is the real wor d Lrirm. In contrast to the word final [n] as in
Bahn, where its labial variant *Bahm also caused priming of Zug,
the variant * Ltirn did not prime the semantically related word
Krach of the real wor d Lrirm. Moreover, there was a significant
difference between Ltirm and *Lrir[nJ. The clear difference in the
results supports our expectations regarding underspecified features
and the matchlno-mismatch asymmetry.

The next experiment examined word medial nasals. In the case
of word final nasals there is a possibility of assimilation, but word
medial nasals, particularly intervocalic nasals, remain untouched.
Hence, one could argue that even if underspecification was a rea-
sonable choice for word final nasals, such an option would be
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Word final /-nl

f T ZUG

Maus r/eahn igahm Bahl Bahs Bahp

Figure l: Mean reactions times to a semantically related target for a word ending
in l-nl and its variants (each class consists of24 words represented here with one
example). Significant priming effects with respect to the control are indicated
DY V.

Word final /-ml
ms

620
610

600
590

s80
570
s60
550

Blatt lliirm L,irn Liirw Liirs Lzirp

Figure 2: Mean reaction times to a semantically related target for a word ending
in /-m/ and its variants (each class consists of 12 words represented here with one
example). Significant priming effects with respect to the control are indicated
DY V.

unnecessary in medial position since there is no possibility of al-
ternation due to assimilation. Under the FUL model, underspecifi-
cation is not determined by the position in a word. Coronal conso-
nants are unspecified for place no matter what position in a word
they occur in. Our prediction is therefore, that the same asymmetry
would hold for word medial nasals just as like the word final ones.

In the second experiment, assuming that medial coronal conso-
nants in German are ail unspecified for place, both obstruents as

ms
620
6 1 0
600
590
580
570
560
550

r Target: KI{ACH
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well as nasals were examined. For the sake of comparison, only
the nasal data are discussed. The task was the same, and the real
word primes with medial nasals were converted into two different
types of nonwords: a nasal with a different place of articulation
and a non-nasal consonant (Dtine 'dune', *Dii[mJe, *Dti[lJe;

Schramme'a scratch', xSchra[nJe, *Schra[v]e). The targets, as be-
fore, were semantically related, and were presented visually at the
offset of the prime.6

The results of the second experiment confirms our earlier find-
ings. Dilne'dune' primes its semantically related word Sand 'sand'

just as well as nonwords made up with a non-mismatching [ranrl.r]
nasal (like *Dii[mJe).In contrast, although Schramme'a scratch'
primes its semantically related word Kratzer, (also 'a scratch'), the
nonword with a coronal (*Schra[n]e) does not. The asymmetry
again shows that when the feature [r,esnr] is extracted from the
signal, it does not mismatch with the underlying unspecified [cono-
Nar-], but an extracted [conoNer] does mismatch with a [rennr].
There was no priming in the other nonword conditions. In the next
two figures we compare the results for the word medial and word
final nasals in the same graph.

The pattern of results of the medial and final coronal nasals are
very similar, as shown in Figure 3. Both the real words and their
acoustic variants with [m] show signihcant priming effects with
respect to the control. However, there is no priming with the other
nonword primes as compared to the control words. This is not the
same for the labials, as we can see in Figure 4.
Here, the real words with [m] are significantly faster than the con-
trol, but neither the nasal variants nor the non-nasal variants are
significantly faster. The nonwords with coronal nasals mismatched
and hence were no different from the unrelated controls, and they
were also significantly slower than the real words with [m].

Thus, language comprehension experiments suggest that the
predictions made by the FUL model combining underspecification
with a three-way matching - perfect match, no-mismatch and mis-
match - are borne out. The experimental results support the pre-
dicted asymmetry between coronals on the one hand, and labials
and dorsals on the other.T
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ms
650

630

6 1 0

590

570

550
Control 'v \ryord [n.l {Variant [m]

Non-nasal
variants

590 558 510 588

+/-nJ 642 568 587 598

Figure j: Comparing word hnal l-nl and word medial /-nJ. Mean reaction times
to the real word primes with the coronal nasal, the primes with the non-mrs-
matching nasal variant [m], and the primes with mismatching non-nasal variants.
Significant priming is indicated by ,/.

ms

630

610

590

570

550
Control { Word [m] Variant [n]

Non-nasal
variants

+l+n/ 598 571 599 613

+l-mJ 602 553 601 573

Figure 4: Comparing word final l-rnl and word medial /-mJ. Mean reaction times
to the real word primes with the labial nasal, the primes with the mismatching
nasal variant [n], and the primes with mismatching non-nasal variants. Significant
priming is indicated by ./.

3. Underspecification in language change

In general, the proponents and opponents of underspecification
have leant on synchronic alternations to support their point. As
we mentioned earlier, Ghini (2001) shows that underspecification
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ofvowel and consonantal features is cr.cial for the understanding
of the complex interaction of prosodic and segmentar prrenlni.oa
in Miogliola, an Italian dialect of Liguria. In pirticulat, tro ,rro"r_ficially similar dental nasals are different in their ,roa..iyin!;;;.._
sentation in terms of prace specification. one of them is ,n*i"n"o
for the feature [conower] and always surfaces as [n], *tl.'rrr.other is unspecified for place and surfaces as a paratar, dental orvelar, depending on context. If underspecificatitn ir puii-oiiir"
mental lexicon, as we claim, then it shoula play a role in funguug.
change since part of change is in fact building representatioii bya new generation. In Ghini (to appear), we find additional support
for this representation from language change. The crucial ru"ir'o."
summarised below.

Many Italian dialects rike Miogliora have rost the quantity dis-
tinction in both obstruents and nasals. Thus alr rutio g.#nut.,
are single consonants in these dialects. For obstruents, h-owever, afurther.process of spirantisation arong with voicing nas nelpeJ tomaintain the distinction between original Latin singre "ooroouo,,
and geminates in Miogliola. If we compare Latin, standard Italian
and Miogliola, we find that Latin [p] iemained in Italian, uut-L.- .
came [v] in Miogliola. In general, Latin single voiceless ,iop, und
fricatives became voiced fricatives in MioglLla ([p, fl > pt; I-"t*
lupus 'wolf', Miogliola [liiv]). Geminate oLstruents, howwer, sim_
ply degeminated in Miogliola and the stop has not und.rgo"f ,pi_
rantisation. That is, Latin labial stops and fricatives [p,, fi b;";;.
gimgli [p, f] (Latin cippus'pillar,, Miogliola [sap]). fni, i, shown
in (8a). Thus, the original geminate/single consonant contrast of
Latin is now maintained as a stop/voiced fricative contrast in Mi-
ogliola.s

In sonorants, there_ was no possibility of voicing or spirantisa_
tion, and hence, after degemination, there was a general neutralisa_
tion of the length contr-ast: Latin [m:, m] > Miogliola [m]. As we
see in the examples in (8b), there is a single labiainasal in Miogli_
ola_noy and the original geminate/nongeminate [md/tm] contrlast
of Latin has been neutralised. In standard Itarian, irr" o.igirrut
length contrast is still maintained. The spirantisation and voicins
processes could play no role in the case of the labial nasal.
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(8) Loss of geminate/nongeminate contrast from Latin to
Miogliola
Classical Latin Italian Mioeliola

a. Latin length distinction changed to segmental distinc-
tion for obstruents.
cippus 'pillar' 

feppo bep tsap*r ( r r )
l f lv l f lv+r(rr)lupus 'wolf' lupo

b. Sonorants did not lenite - distinction lost with labial na-
sals
summus 'utmost' sommo sum sum * r (pr)
ftrmus 'smoke' ftrmo fym fym + r (el)

However, given the assumption of underspecification, the coronal
nasal had the possibility of a dual pattern of change. And this is what
happened: the original quantity distinction was transformed to a
place distinction. The following examples illustrate this.

(e) QulNnrv distinction to place distinction for coronal na-
sals
Classical Latin Italian Mioeliola
pannus 'cloth'

canis 'dog'

alumnus 'alumni'

unus 'one'

geminate [nd
single [n]

pcn * r (pr)
kanfr (er)

msc alj'na n'mr (sc)
rr,resc alyne rru (er)
M,c,sc c6na rau (sc)
rra,c.sc c6ne r.nru (rr)

panno pon
kdne ka!
alunno alj.n

aljnr
uno g\

yru

Mrocuora
lnl
furl in onset followed by [r], [g] in
coda, [n] elsewhere

Both the single /n/ as well as the geminate lntlin Latin were unspecl-
fied for place. In Miogliola, the original Latin single coronal nasal
/n/ remained unspecified for place - that is, there was no change.
The geminate ln:l degeminated, but became specified for place. As
a result, the synchronic grammar of Miogliola shows surface neut-
ralisations from two underlyingly different specifications. Latin pan-



Underspecified recognition 653

nusbecame Miogliola [pcn]sc., [pan + d rnlner, where Miogliola
has lost the geminate/nongeminate contrast. But the [n] in Latin
unus has several surface variants in Miogliola: [o4], [tbna], [j'pr] and
[cbne]. The quality of the nasal depends on whether it is in the coda
and on the quality of the following vocalic suffix. Compare now the
original Latin aluwtnzs, where the fmn-/ sequence became a gemi-
nate at a later point. Here, all four gender and number contrasts
are also present as in 'one', but the consonant is always a dental
[n]. Note the differences in the masculine plural: [fp] (from unspeci-
fied A{/) and falfnd (from specified lnl). The quality of the vowel
has no effect on the original geminate /n:/. The change in the repre-
sentation from Latin geminate coronals to Miogliola is illustrated
in (10).

(10) Change of coronal nasals from Latin to Miogliola due to
underspecification

Classical Latin
distinction by qulNrrrv, not eLACE

p
I

PLACELESS N

I
PLACE

unspecified
lnd

Miosliola
distinction by erece, not euANTrrY
PLACELESS N PLACESPECIFIC N

I
PLACE PLACE

unspecified I

SURFACE [n, Jr, r]l
CORONAT

lnl
As can be seen, the placeless IN/ can take place features according to
segmental and prosodic contexts and surface as [n.,3r, q], while the
coronal nasal specified for place, surfaces always as a dental [n].

PLACELESS N

I
PLACE

unspecified
SURFACE [n]
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Thus, synchronically, Miogliola has two coronal nasals, only one
of which is specified for place. Like many other languages, under-
specif,rcation is used contrastively. The history of these nasals show
that the source of the place-unspecified nasal is the original nongem-
inate coronal, which maintained its underspecification and has sev-
eral surface variants depending on prosodic contexts. It is the origi-
nal geminate coronal nasal which became a single consonant and ac-
quired place specification. This consonant has no surface variants.
What is interesting is that it was possible for the language learner to
take advantage of the underspecifred place representation to main-
tain the original geminate/nongeminate contrast. This was not pos-
sible for the labial nasals which were already specified for place.

Thus, under our view, underspecified phonological representa-
tions, being a part of the mental representation, play a role for both
processing and change. Some of the notable parallel aspects are sum-
marised in the followine table.

( 1 1 ) Processing and Change with respect to underspecified
phonological representations

PROCESSING CHANGE

a) Segments can vary ac-
cording to context, leading
to loss of contrast; how-
ever, there is asyrnmetry in
the variants.

a) Sound change can lead
to loss ofcontrasts and re-
structuring; however, there
is occasional asymmetry in
restructuring.

b) Asymmetry in represen- b) Asymmetry in represen-
tation leads to asymmetry tation is reflected in phono-
in recognition. logical change.

c) Underspecified represen- c) Underspecified represen-
tations lend themselves to a
three-way matching with
features from the signal. al-
lowing for the recognition
of neutralised sesments.

tations can be exploited by
Ianguage learners to main-
tain contrasts which would
have otherwise been neu-
tralised.
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4. The FUL model of speech recognition

In an attempt to model a system with an underspecified. lexicon
and a three-way matching described above, we have developed an
automatic speech recognition system which runs on these lines
(Reetz, 1998,1999; Lahiri, 1999). The central goal behind this en_
terprise is to test the actual viability of a feature based extraction
system in combination with an underspecified lexicon and a ter-
nary matching condition. Experimental results in language compre-
hension allowed us to believe that the human system doei not uie a
fully specified phonological representation and that there is an
asymmetry in the matching from the signal to the lexicon. Evidence
from language change also suggests that the asymmetry in place rep-
resentation can lead to an asymmetry in the restructuring of forms
and to the establishment of an altered pattern of contrists. Both
pieces of evidence are real but do not provide us with a handy means
of testing the predictions. we therefore took on the task of building
a model based on our premises, with the addition of an acoustic
front-end which could handle the online extraction of features.

Given the variation in the speech signal, it is not surprising
that automatic speech recognition using simple spectral template
matching has problems. Any variation of the signil leads to varia-
tion of the spectra that are compared to the stored templates. Klatt
(1989) provides a comprehensive review of models "rhi"h endeav-
our to solve the variation problem by storing all spectral informa-
tion in the lexicon. The more popular approach to resolving such
variation is a statistical one. Statistical approaches like Hidden
Markov Models based on large training seti Lave led to acceptable
results, but are still speaker and transmission-line dependent.
Moreover, the success of the HMMs depend more on probabilities
of longer strings of data (including word sequence probabilities)
rather than on a front-end phonetic analysis. The system presented
here operates on completely different principles, both wiih respect
to the front-end as well as the lexicon. No spectral templates are
computed from the speech signal to access the lexicon. iteither is
the signal analysed in great detail for acoustic evidence of indivr-
dual segments and their boundaries. The principal aspects of the
FUL model are the followins:
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(12) Characteristics of the FUL speech recognition system
a. The system is based on the phonological representation

of words in the lexicon.
b. Each word has a unique representation in spite of the

large variation. The phonological representation is fea_
ture-based and assumes underspecification.

c. The speech signal is converted into distinctive phonolog-
ical features. The conversion operates speaker-indepen-
dently and without prior training.

d. Once the features are extracted the system never re-eval-
uates the acoustic signal, i.e. there is no close phonetic
investigation of the signal to verify or falsify word
hypotheses.

e. Features extracted from the signal are matched with
those stored in the lexicon using a ternary system of
matching, non-mismatching, and mismatching features.
All word candidates that match with the initial feature
set are activated, together with their phonological, mor_
phological, syntactic, and other information.

f. The word candidates are expanded to include word
hypotheses, even without complete acoustic evidence,
which are then available for the phonological and syn-
tactic parsing that uses additional prosodic and other
information and operates in parallel with the acoustic
front-end.

The lexical representations are similar to what we have seen before.
Each morpheme is represented with root nodes linked to minimal
feature specifications. For the sake of space, in the exarnples in
(13) the features are listed in a linear string for each segment. In
all, FUL requires twelve phonological features.e euantity is repre_
sented in terms of moras and not by features.

(13) Lexical feature specifications for German
BAHN lbanl
railway lbl [coNs] [ren] [vorcn]

la:l [row] [nonslr]
lnl [Nesnr]
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SPECK [peV
bacon Il fsrnrorNrl

/p/ [coNs] [ren]
/e/ [nrn]
lkl [coNs] [oonsar]

The conversion of the speech signal to phonologicar features is
performed in two steps. The task of the acoustit front-end de-
scribed here is (a) to-remove linguisticarly irrelevant information,
(b) to use speaker independent acoustic characteristics to compute
the features, and (c) not to excrude potential word candidatesiue
to computational faults.or poor signal quality. The general designprinciple of the system is to use simple and only rough measures
that cooperate to form a stable system.

First the signal undergoes a spectral analysis that delivers Lpc
formants and some 

louqh spectral shape parameters computed
from the speech signal using a 20 ms window with 1 *r ,,"/rut..
The output is an 'online' stream of spectral data as shown in the
second panel of Figure 5 (only the speech signal and formant
tracks are shown in panels I and 2).

The spectral parameters are converted by simple logical deci-
sions into phonological features. The intention is to deriie u,"pr.-
sentation of the speech signal that is relativery independent oithe
speaker and acoustic line properties. onry very b^road acoustic
characteristics define the 12 phonological features we use (coo,ro-
NANTAL, HrcH, Low, RTR, voICE, etc.). For example, the feature
ltttcHlis defined by the condition that Fr has to be below 450H2.
It can be the case that parts of the speech signal incidentally mlet
or miss the criteria for a particular feature. That ir, u ooo"-1ro*1
sound that is nor classified as [rucn] in its lexical represenLtion
might have an Fl below 450 Hz, and another sound ."gm"oi thut
should be classified as [nrcu] might have an Fl above +so uz. gut
most important, a sound segment that is [roW] shoul d, not have an
Fl below 450Hz.In other words, there is a limit to define a mem_
ber ofa feature undoubtfuily, put there is a certain range that does
not exclude possible members. In general, however, ihe acoustic
characteristics are chosen so that an members of a particurar fea-
ture are captured and other sounds might be includid as well, but
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members are hardly missed. And, more important, sounds belong-
ing to a mismatching feature are not captured. The matching con-
ditions and the lexicon eliminate unlikely candidates later. The ra-
tionale behind this very relaxed procedure is that in running speech
a speaker can deviate from any 'norm' of acoustic characteristics
of a sound due to assimilation, coarticulation, dialect, vocal tract
parameters, and others. The FUL system does not have such a
'nonn'. The system only expects that the feature [rncH] is acousti-
cally characterised by a low first formant.

The conversion from the spectral characteristics of the speech
signal into phonological features delivers a stream of features. Fea-
tures can change every millisecond as a consequence of the window
step rate. Features are dehned independently from each other and,
hence, they can change independently from other features. For this
reason, the features are filtered and time aligned within roughly
20 ms to define feature bundles. These bundles of distinctive fea-
tures extracted from the speech signal are now compared to those
sets stored in the lexicon. This comparison is executed only when
the computed feature set changes (and not every millisecond), and
the matching logic generates match, no-mismatch and mismatch
conditions. The ternary logic works in the same way we have dis-
cussed before.

The computation of the matching features relative to the
number of features computed from the signal and the number of
features stored in the lexicon using the formula given in (3) adds
a score for each feature bundle computed from the signal for each
entry in the lexicon. The scoring of the consecutive feature bundles
gives the word score and its ranking in the list of possible candi-
dates. Feature sets at the beginning of a word gain a highei weight
than non-initial features sets; the weight is computed by an expo-
nential decaying function. The set of all word candidates is the
lexical cohort that is used to generate word hypotheses.

To recapitulate, all word candidates that match with the initial
feature set are activated, together with their phonological, mor-
phological, sy'ntactic, and other information. No segmentation or
grouping into syllable units is performed. Matching features
increase the scoring for potential word candidates, non-mismatch-



Underspecified recognition 659

pau

str

dor

0 ro0 200 300 400 5oo 600 700 800 900 1000

Figure 5: Speech signal, formant tracts and (uncorrected) feature tracks of the
sentence "FuBball ist Spitze" (football is fantastic), spoken by a male German
speaker.

ing features do not exclude candidates, and only mismatching fea-
tures lead to the rejection of word candidates. The lexicon contains
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segmental, moryhological, semantic, and other information for
each word, but for the comparison with the information computed
from the acoustic front-end only their representation by phonolog-
ical features is used. These other information sources are not used.
to find word candidates in the lexicon but are used to exclude
unlikely candidates on a higher level of processing. Characteristic
of the system is the operation of these 'higher' level modules in
parallel to the acoustic front-end and the lexical access. These'higher' levels of processing are not described in this paper, which
restricts itself to the description of the speech analysis, matching
condition and the word hypotheses formation.

For example, the initial feature set [coNsoNlNrer][reuar][Nl-
slrl activates not only all words beginning with an [m], but also
words beginning with other labials that do not mismatch with a na-
sal (like [b])10 and also [n] because it is unspecified for place; the
ranking of [m] would be higher than [n] tpl tpfl > Fl tfl > [t] [v] >
[d]. But if the signal gives [coNsoNalrrlr]fconoNlr][NlsnI-], a much
smaller set is encountered since al1 dorsal and labial consonants
mismatch. The consecutively incoming feature sets deactivate word
candidates from the cohort that have mismatching feature sets. In
other words, the system overgenerates possible word candidates
but does not include impossible word candidates. If the signal gives
[rucH][soNoRANr], all high and mid vowels would be activated but
no low vowels. The rationale behind this mechanism is to include
possible variants of sounds (e.g. the vowel lalcould be pronounced
as an [c] or even as [e]) but to exclude variants that will not occur
(e.g. the vowel /a/ is never produced as an [i]).

Further, at each point, whenever a word candidate is identified,
another new word candidate can begin. Thus, the assumftion be-
ing that although the signal does not dependably have information
of word beginnings or word endings, the lexicon initiates candi-
dates as it goes on.

The main aim of the system is to investigate whether an under-
specifred representation is suitable to model the linguistic behavi-
our of humans and their representation of speech. An appropriate
evaluation would be therefore a comparison of the system to hu-
mans' behaviour. This is beyond our capabilities todav with respect
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to the state of the implementation of the system and to detailed
comparable data we have about humans'perception. On the other
hand, Hidden Markov Models (HMMs), the standard in auto-
matic speech recognition, operate on different principles and make
a direct comparison difficult. HMM systems gain from longer
strings of data (states, segments, words, or whatever), because they
do not make a definite decision at the smallest unit but delay deci-
sions as long as possible (eventually up to the end of the recogni-
tion of a phrase). This is one of the reasons why implausible words
might show up in an HMM analysis in the output: the overall
probability is maximised even if a part of the string has a very low
probability, but there is no 'impossible' label that a part of the
string might have. The FUL system makes decisions at the first
step, where it rejects candidates about which it is 'sure' that they
do not meet a criterion.ll Thus, this is the first step to compare
the FUL system with a HMM system. To make the comparison
of single units more compatible, we restrict ourselves to vowels:
vowels are more gradient and are more likely to reduce or alter in
running speech across speakers and thus allow a more fair compar-
ison.

The Kiel Corpus of Spontaneous Speech (IPDS 1995) served as
the database for the comparison. Ttris corpus contains high-quality
recordings of spontaneous dialogues of two speakers at a time who
were asked to arrange appointments with each other. A total of 54
minutes of speech was recorded for 26 speakers (16 male and 10
female, mostly students from north Germany). The speech data
was labelled and transcribed by trained phoneticians. The analysis
is based on what the transcribers heard rather than what the
speakers intended to say. The Kiel corpus transcription uses 17
vowels in German (all monophthongs, including long-short and
tense-lax vowels: [i:, r, y:, y, e\ a:, t:, t, c, ai, a) i, o:, u:, u, a, ?]).
For the comparison these were mapped to the 13 vowels the FUL
system uses for German since the FUL system does not distinguish
long and short vowels on the level of features, but only by moraic
representations. Moreover, there is no featural difference in the
representation of [a] and [e], and [e] and [e] which are also only
moraically distinguished. Even if we disregard the moraic repre-
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sentation, these simplifications do not lead to a noticeable increase
of existing homophones in the lexicon. The comprete set of vowels
used by both systems is [i, l, y, y, €, g, t, e) a, c, o, u, u].

The hidden Markov model had three states and eight mixtures
to model every phone;rz i.e. the system was trained to model the
phone and the left and right transitions of that phone (these are
the three states) and allowed 8 'variations' of a phone to exist, that
are realised by mixtures of Gaussian probability density functions
(these are the 8 mixtures of the three states).l3 The phones were
modelled left-to-right and no states were skipped. ThJtransforma-
tion from the speech waveform to the states was done with 12
MFCC (mel-frequency cepstral coefficients) plus the energy
parameters and the corresponding delta-values, giving a total of
26 parameters (cf. e.g. Jelinek, I997;De Mori, l99g; or Becchetti &
Ricotti, 1999 for details about the parameters of stochastic ASR
systems). The training of the system was done with a jack_knife
procedure, where a subset of the recordings served as training set
(i.e. were used to define the pattern sequences for the phones) and
another subset (other speakers and other sentences) were used as
test set (i.e., had to be 'recognised'). About g0% of the data served
as training set and the remaining20ok were used as test set. This
procedure was repeated 5 times with different subsets of soeakers
and sentences selected from the database (i.e. each data let was
exactly once in the test set) and the recognition results are averaged
over these experiments.

For FUL, we have used only 20 ms of the centre part of the
vowels for this comparison. The vowels are classified by combina-
tions of 7 features ([sor.ronaNr], [ranrer], [conoNar], [oonser],
[row], [mcH], [nrn]) and the ternary logic describea eaitier. Recali,
that the FUL system does not require any training and therefore
there is no separation between training and test sets. our results
are based on a single run.

For both systems, only the top-scoring vowels were counted as'correct' recognition, i.e., only the vowel(s) with the highest rank
were compared to the transcribed phone and counted as correct if
they were identical. Note that lower scoring vowels are still con-
tributing to the recognition, both in the HMM and in the FUL
system. The results are presented in the Figure 6.
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Figure 6; Vowel recognition: HMM and FUL

For the HMM the top-scoring vowels rcaatr '77.96 0% correct re-
cognition. For the same data set the FUL system achieved 8t.l5o
correct recognition. From these results it seems that the FUL sys-
tem is able to hold its own in an evaluation format prescribed by
stochastic models.

1 0 0 %
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Figure 7; FUL: Vowel recognition by gender

Formants are relatively invariant to spectral tilt, random noise,
and overall signal level, which are altered by microphone and
transmission-line conditions, hence, these factors do not influence
the performance. But formant values do depend on vocal tract size
which differs between male and female speakers. For the speakers
examined here, the average Fl was 483 Hz for the male speakers
and 576 Hz for the female speakers across all vowels, indicating a
shorter 1ip-glottis distance for the female speakers. We therefore
examined the differences between the26 male and 10 female speak-
ers, and found that the vowels were equally well identified across
gender. The results are graphically presented in Figure 7. Although

r  8 1  . 0 1 % E  8 1 . 4 6 %
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there is a very slight bias in favour of the female speakers, the
difference is not significant.

In sum, the following characteristics are salient in our imple-
mentation of the FUL model in a speech recognition system. It is
speaker independent and to a large extent independent of micro-
phone and transmission-line conditions. No training is required,
and last but not least, the system is adaptable to other languages
because the lexical representation is based on the phonological
systems of individual languages.

4.2 Comparable existing models

We now turn to a comparison of our system with existing models
which also take recourse to features or related linguistic units, the
closest of which are the Acousrrc Lal"orr,lq,Rr model (Stevens, Per-
kell & Shattuck-Hufnagel, 1997) and Tirm Mp PHoNorocv (Car-
son-Berndsen, 1998).

In spirit, the closest model is that proposed by Stevens and his
colleagues (1991; earlier LAFF, Stevens, 1992; Stevens et al., 1992),
which is also discussed at length in Klatt (1989).14 The system
resembles a more advanced version of the original analysis-by-
synthesis principle (Stevens, 1960): A spectrogram is analysed for
acoustic characteristics and phonetic segments that relate to these
characteristics are proposed as possible candidates. The features
associated with these segments are looked up from a table and
possible assimilations from neighbouring segments are predicted.r5
The spectrogram is inspected again for acoustic characteristics of
these hypothesised features and segment candidates are verified or
falsified on basis of this detailed acoustic information. The most
prominent acoustic characteristics are hypothesised at segment
boundaries (e.g. dropping or missing Fl at VCV boundaries or
down-glides of Fl in V-glide-V sequences). The crux of the ap-
proach is to examine the speech signal for detailed acoustic charac-
teristics and essentially look for characteristics that might relate to
the proposed features. The biggest difference between Acousrrc
La.l,plrenr and FUL is that in the former, there is a conversion
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of the acoustic characteristics into a segment and then features are
looked up and searched for. The whole process is not lexicon-
driven as the FUL system and is motivated by the acoustical ef-
fects at segment boundaries (hence, Acousuc Laxouar.rs). The
idea behind the system is the handling of allophonic variation after
the recognising of the segmental context, whereas the FUL system
does neither look for segment boundaries (rather tries to ignore
their effects) and handles variations by the matching logic.

Since the system is not implemented by an automatic procedure, it
is difficirlt to compare its performance with FUL or an HMM model.

Another system that converts speech signals into acoustrc
events and uses them to access the lexicon is most completely de-
scribed by Carson-Berndsen (1998). The system incorporates two
components, the HEAP 'acoustic event' classifier and the SILPA
'phoneme event' recognition module. These two components are
described now in more detail.r6

The HEAP system (Hiibener & Carson-Berndsen, 1994) is essen-
tially a statistical categoriser which classifies the speech signal into
24 (later 2J, cf . Carson-Berndsen, 1998: 80) 'acoustic events' (like,
'fricative, noisy, nasal, a-like vowel, mid vowel', etc.).17 This classif,r-
cation is computed from 30 ms frames with a step-rate of 20 ms that
are parameterised with 5 cepstrally smoothed PLP coefficients (per-
ceptual linear predictive coefficients, Hermansky, 1990), log energy,
and regression coefficients (total 13 coefhcients per frame). This rec-
ogniser was trained on automatically labelled data on 180 utterances
of a single speaker to classify the signal into the acoustic events. To
test the performance of HEAP, 20 additional utterances were classi-
fied between 77 oh and980/o conectly for a particular acoustic event.

Because the acoustic events are not synchronously changing
with the edges of phonemes, a finite-state parser built up a se-
quence of 'phonological events' that are in turn used for phoneme
recognition. That is, the output of the HEAP classifier (i.e. the
acoustic events) are converted by a finite state automaton into
'phonological events'. These are 7 independent 'phonological

attributes', each one having several values. For instance, the pho-
nological attribute MANNER includes 'plosive, fricative, nasal, lat-
eral, affricate, vowellike, diphthong'. The phonological attribute
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eLACE includes 'labial, apical, palato-alveolar, velar, palatal, ur,rr-
lar, glottal'.18 In all there are 31 phonological values. Additionally,
all possible onset and coda clusters in German syllables were used
to iestrict the number of possible phoneme sequences derived from
the acoustic events. This parser/automaton includes an "under-

specified representation of the syllable", but underspecification is
understood here as a method to cluster several phonological seg-
ments into one 'phonological event'. In this way, 'underspecifica-

tion' is understood as a state (or memory) saving task rather than
as it is understood in phonology (and in this paper otherwise) as
a structure that explains certain processes.

Furthermore, the mapping of the acoustic events computed
from the signal onto the constraints of the parser are done in a
rather different way than in the FUL system. The SILPA parser
operates in the following way: if there are more acoustic events in
the signal than a particular node of the finite state network needs,
the additional events are ignored and the constraint that this node
represents is met. If there are less acoustic events than specified in
a node, the network could be parameterised so that more impor-
tant events for a constraint are weighted higher.

The best empirical evaluation scoring rate given is 66.9loh for
phonemes in a scheduling task scenario with many speakers and
82 utterances (Carson-Berndsen, 1998: 203).

In sum, the system converts the speech signal into 28 'phonetic

events' by statistical means that are in turn converted into 31 dif-
ferent 'phonological events' by a finite state machine. The increase
in representational units from the signal to the lexical level itselfis
contradictary to an 'underspecified' representation and rather it is
a generation of a detailed phonetic description. Essentially, the use
of terminology here is quite different from the description of the
FUL system and the two systems are only superficially similar.

5. Conclusion

Our aim has been to present a model of lexical representation which
has significant consequences for various aspects of human behavi-
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our, and which can be computationally implemented for the
purposes of machine recognition of speech and the testing of models.
A lexicon which is phonologically underspecified is the pivot of the
FUL model. Phonological variants of morphemes are not listed, the
assumption being that the abstract underspecified representation
will subsume any phonetic or phonoiogical variation produced by
the speaker. The perceptual system extracts phonological features
from the signal and directly maps them on to the lexicon. No other
linguistic unit is compiled or extracted at this level. There is no inter-
mediate representation like phoneme or syllable. Incoming phono-
logical features activate word candidates constrained by a ternary
matching condition, which in turn are fed directly into the phono-
logical and syntactic parser.

Although morphemes are phonologically underspecified, they
have suffrcient information to distinguish them from each other -

unless of course, they are really homophones. This assumption is
directly in contrast to a system which assumes that all variants
would be listed. The underspecified representation in the FUL sys-
tem anticipates that there will be variation, but that the variation
is itself constrained even at the level of postlexical phonology.

To illustrate, we can take as an example high coronal vowels
which can phonologically reduce/lax/unround in running speech.
In words ltke Fiiller [fvler] 

'pen' 
, Fiihler [fyler] 

'antenna', Filler

[filer] 
'material for smoothing surfaces' and vieler [ftler] 

'much,

many-cEN' the first vowel can be indistinguishable. Depending on
phrasal structure, rate of speech, focus, and other factors, all the
variants can represent one possible pronunciation of each of the
words. That is, underlying /y/ could become [v], [i] or [r]; similarly,
/v/ could be realised [r], [y] or [i] and so on. A11 speakers may not
have all of the possible pronunciations for all four words, but
across speakers it is possible to obtain all variants. Storing the vari-
ants makes it impossible to distinguish one from the other; all vari-
ants will have equal status unless there is a weighting for each possi-
bility. If this weighting depends on the statistical distribution, the
weights depend on the particular data set and it is possible that two
of the three variants would have similar weights. FUL predicts a dif-
ferent hierarchy for each variant. If Filler was the mispronounced
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variant of either Fiiller, vieler, or Fihler, neither word would be a
mismatch, but the scores are different as we can see below.

(14) Scores for [r] of Filler
Lexical features Input features Score

of [r]

FflcH, L$e:nl [ucn, con, nrn] lzl] x 2) : 0.16
[rucu] 12(3 x 1) : 0.33
[rncu, r.nr, 22lQ x 3) : 0.44
RTRI

Irl Filler [rucu. nrn] ) 2 t t 1 Y ) \ : f i 6 6

Clearly, when [r] is the surface variant, Fillerhas the highest score.
Next in line is Filller folTowed by vieler and then finally the last
choice would be Fiihler. The FUL system predicts that for the 1is-
tener, when [r] is heard, [v] is a better match than [i]. That is,
maintaining the laxing (i.e. [nrn]) is preferred. It is entirely possible
that storing all the variants with weights would give the same re-
sults, but this would have to be done for each lexical item individr.,-
ally. This is not the case for FUL. The predictions would hold for
the entire lexicon and would be borne out as a consequence of the
underspecified representation and the scoring which incorporates
the features extracted from the signal, the features in the lexicon
and the matching features.

Since the claim is that FUL models human perception, evidence
from both language comprehension experiments and language
change were put forward. Language comprehension experiments
have shown that listeners extract certain acoustic characteristics
reliably, but do not match acoustic details with the lexicon. Rather,
the experimental results are best explained with the assuinption
that lexical access involves mapping of the acoustic signal to an
underspecifi ed featural representation such that non-mismatching
variants are treated differently from mismatching variants. If an
underspecified representation is indeed part of the adult mental
lexicon, then one assumes that the language learner is able to con-
struct such a representation. If so, then language change ought to
provide evidence that an underspecified representation at a certain
point of time lends itself to a different pattern of chanse than a

$l Filhler
l1l vieler
lvl Filller
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more fully specified representation. Our example came from the
change of geminates to nongeminates from Latin to the northern
Italian dialect of Miogliola. Although degemination occurred ev-
erywhere, the original length contrast in Latin obstruents could be
maintained by spirantising the original nongeminate stops. This
was not possible for sonorants where in general the contrast was
lost, the exception being the coronal nasals. For these consonants,
the original underspecif,red representations were exploited, such
that the Latin nongeminate /rV remained underspecifred in Miogli-
ola, but the geminate /n/ degeminated but acquired a place fea-
ture.

The computational adequacy of these assumptions was verified
in implementing an automatic speech recognition system. Again,
assuming that speech is variable but that the variation is con-
strained, the FUL ASR system focuses on solving the problem of
recognition not by capturing all possible details from the signal
but by extracting acoustic characteristics which can be easily inter-
preted as distinctive features which are relevant for distinguishing
lexical representations. The information retrieved from the signal
is not responsible for building lexical representations. The lexical
representations in their idealised forms already exist and the infor-
mation from the signal (i.e. the extracted features) is mapped onto
existing representations. Resolving variation is achieved by the fact
that given underspecification and the ternary matching logic, a
one-to-many matching is possible. Since particular underspecified
representations are geared towards accepting only phonologically
viable phonetic variants, the one-to-many matching is not random.

We should add at this point, that our main objective is not to
construct the most marketable speech recognition system. Product-
oriented systems have specifrc constraints and individual require-
ments. In principle, the FUL system is adaptable for specific pro-
ducts, but this has not been our main concern. A system to re-
confirm flights, for instance, does not require a complex model
like FUL. A fimited vocabulary combined with an intelligent dia-
logue is a far better solution. Our aim has been to construct a
computational system which operates on the principles we believe
are important for human perception. We would like to make it
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entireiy speaker independent and not use any stochastic pro_
cedures, thereby no doubt sacrificing possible gains. However, as
it stands, FUL can provide a means of testing speech perception
theories, particularly details of feature interaction, properties of
features, lexical representations, coarticulation and such. It could
also be an excellent tool to study dialect variations and possible
directions of change. Since FUL takes the speech data aJ speech
and not as any random acoustic signal, and assumes thai this
speech is produced by speakers who have a real language in their
heads, it is intended primarily as a linguistic tool, using linguistic
primitives and exploiting linguistic knowledge.

The FUL system is highly constrained - in the allowable lexical
representations, in what is extracted from the signal, and in the
information used to make the matching decisions. The message
has been "Less is More" in a positive sense.
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Notes
+ We would like to dedicate this paper to Mirco Ghini t, without whose

abounding enthusiasm and inteilectual commitment, a large part of this re-
search would have never been possible.

I There are other proposals outside phonological approaches, like 'full listing
models' that abandon generalisations altogether, or .exemplar models, (e.g.
Medin & Schaffer, 1978; Nosofsky, 1986) that use individual items as repre-
sentatives for a category or 'prototype models, (e.g. K1att, 1979) that com_
pute an average representative for a category. There appear to be misconcep_
tions regarding the terminology. For instance, Bybee (2000: 253) refers io
her model of the lexicon as an 'exemplar model', while assuming that "Each
experience of a word is stored in memory with other examples of use of the
same word". Such an assumption fits with a 'full listing model'. To cover a1l
these models and their variants would go far beyond the scope of this article.
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2 For suppoft for underspecification see, for ilslance, Keating (1988), Kiparsky
(1993), and Rice (1996); psycholinguistic evidence is provided in Lahiri, Jong_
man & Sereno (1990), Lahiri (1991), Lahiri & Marslen-Wilson (1991. 1992).
and Fitzpatrick & Wheeldon (2001). Opposing views have been presented, for
example, in McCarthy & Taub (1992), Nlohanan (1993) and Steriade (1995),
and references therein.

3 Mohanan (1993) gives a hierarchy of assirnilation possibilities where the most
frequent type is coronal assimilation. In languages where labials do assimilate
to other places of articulation, a dentaValveolar sound is always subject to as-
similation. This persuades Mohanan to assurne that there is no underspecifica-
tion but rather a hierarchy of'attraction'. In our model, for the labials the as-
simildtion must be a result of delinking-cum-spreading and would be treated
differently from coronal assimilation.

4 Full statistical and methodological details are not repeated here since this is
an overview and the original paper is being published in an experimental
journal. A total of 24 monosyllabic words with final l-n/ and 12 monosyllabic
words with final /-rnl were used as primes, each with a semantically related
target (e.g. Bahn-Zug). The differences in the number of items was due to the
fact that there were less words in the language ending with /-nrl where the
final consonant could be changed to make nonwords. A total of 144 German
native speakers were tested.

5 Significance was tested at a 5o/o level.
6 There were 20 words each with medial lnl and /nr/. A total of 90 subjects

participated in this experiment.
7 For a recent review of the different predictions and experimental evidence for

lexical access based on underspecification or full specifrcation, see Fitzpat-
rick & Wheeldon (2001).

8 Coronal stops also became affricates, but this is not important for the discus-
sion here.

9 The total number of features needed may be language dependent.
10 The signal feature [arnurr] mismatches with the lexical feature [Neser], cf.

(7a). If [N,tsl.r] is found in the signal it cannot mismatch with [aanurr] be-
cause [etnt,'rr] is not stored in the lexicon.

11 Note, however, that this is a much more relaxed decision than in many earry
phonetics-based systems, that tried to determrne the set of possible segments.

12 The HMM experiments were run at the Unirersity of Saarbrticken by William
Barry, Jacques Koreman and their colleagues.

13 To use the left and right context in modelling phones to allow different
contexts in ASR was already proposed by Klatt (1979).

14 At a workshop at Schloss Freudental (Konstanz) July 1998 ettitled Speech
Recognition: Man and Machine, Ken Stevens and his colleagues presented the
system in detail.

15 The original texts do not make a clear distinction between acoustic character-
istics and the phonological features as it is plesented here. Both are under-
stood by Stevens and his colleagues as differenl expressions of the same thing.
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16 The 'acoustic events' are very different from phonological features and neither
are they acoustic characteristics, as in Stevens' model.

17 The classifier for the acoustic events was originally planned as a deterministic
module that uses auditory spectra as input (Htibener, 1991).

18 Overall, the system maps the acoustic events to phonetic descriptions rather
than phonological features.
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